Experimental Value Of G/Cm3

Experimental Value Of G/Cm3



The uncertainty of the Experimental value of density (g/cm3): EV measurement should be given with the M actual measurement.[1] = V The vernier principle is the difference between two scales.


A student’s experimental value for density is 33 g/cm3. The accepted density is 30 g/cm3. Find the percent error using the formula experimental value? accepted valueaccepted value X 100%.Round to the hundredths place. jayman03234 is waiting for your help.


11/16/2017  · The value of the slope obtained above in #2 yields the density of your unknown solid, in units of g/cm 3. Using this value , identify your unknown solid (see Procedure, Part C, #5). ID Code of Unknown: Name of Unknown: True Density: You are supplied with another cylinder made of the same material.


1/7/2009  · The density of an aluminum block determined in an experiment was 2.68 g/cm3 . (True value 2.70 g/cm3 .) The experimental determination of iron in iron ore was 16.45 %. (True value 16.12 %.) A balance measured the mass of a 1.000 g standard as 0.9981 g.


9/26/2013  · The actual density of copper is 8.9 g/cm3 . So this experimental value is WAY off. 21.2/8.9 = 2.38 so it’s off by over 200%, g/cm3 to kg/m3 (gram/cubic centimeter to kilogram/cubic meter) 0.78 g/cm3 to kg/m3 (gram/cubic centimeter to kilogram/cubic meter) lb/ft3 to g/cm3 (avoirdupois pound/cubic foot to gram/cubic centimeter) 85 g/cm3 to kg/m3 (grams/cubic centimeter to kilograms/cubic meter) kg/m3 to kg/cm3 (kilogram/cubic meter to kilogram/cubic centimeter), Where E is the experimental value and T is the theoretical value . This formula is similar to percentage change. For example, how to calculate the percentage error: Suppose you did an experiment to measure the boiling point of water and your results average to 101.5°C. This is your experimental (measured) value .


The density of aluminum is known to be 2.70 g/cm3 , and the mass of apiece of aluminum foil can be measured with a balance. The volume of the aluminum can then can be calculated by using the rearranged equation: V = m/D. … Subtract the accepted value from the experimental value . Take the absolute value of step 1. Divide that answer by the …


3. Iron has a BCC crystal structure, an atomic radius of 0.124 nm, and an atomic weight of 55.85 g/mol. Compute and compare its theoretical density with the experimental value , 7.87 g/cm3 . 4. Rhodium has an atomic radius of 0.1345 nm and density of 12.41 g/cm3 . Determine whether it has an FCC or BCC crystal structure. 5.

Advertiser